l Tick	Code No.: 2120	5
V	ASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD B.E. II Year (E.E.E.) I-Semester (Main) Examinations, December - 2015	
Tin	Principles of Mechanical Engineering ne: 3 hours Max. Marks: 70	
	Note: Answer ALL questions in Part-A and any FIVE questions from Part-B	
	$Part-A (10 \times 2 = 20 Marks)$	
1.	Give the main classification of heat exchangers.	
2.	Write the important applications of air refrigeration system.	
3.	Distinguish between fire-tube and water tube boilers.	
4.	Sketch different thermodynamic processes in gas turbine cycle on P-V and T-S plane.	
5.	State the difference between compound and epi-cyclic gear train.	
6.	Give the classification of gears.	
7.	Define the specific speed of a hydraulic turbine.	
8.	Write the practical applications of Bernoulli's equations.	
9.	Define manometric head.	
10.	Give the functions of air vessels in reciprocating pump.	
	$Part-A (5 \times 10 = 50 Marks)$	
11.	a) Draw the T-s and P-h Diagrams of vapour compression refrigeration cycle with dry saturated vapour at the beginning of compression.	[3]
	b) Determine steady state heat transfer per unit area through a 10 cm brick wall (k=0.69W/m ⁰ C) which has temperatures of 105 ⁰ C and 10 ⁰ C maintained on its two faces. How this heat transfer would vary if each 3 cm thick layer of magnesia (k=0.113W/m ⁰ C) is added on both sides of brick wall. Also determine the interface temperatures.	[7]
12.	a) Explain the working of locomotive boiler with the help of a neat diagram.	[5]
	b) A two stroke cycle internal combustion engine has a mean effective pressure of 6 bar. The speed of the engine is 1000 rpm. Calculate the indicated power if the diameter of the piston 110 mm and the stroke 140 mm.	[5]
13.	a) Derive expression for power transmitted by the belt.	[3]
	b) Find the power transmitted by a belt running over a pulley of 600 mm diameter at 200 rpm. The coefficient of friction between the belt and pulley is 0.25, angle of lap 160° and maximum tension in the belt is 2500 N.	[7]
14.	a) Write the Darcy's formula, state its application and explain all the parameters with their respective units.	[3]

b) Calculate the discharge through a pipe of diameter 200 mm when the difference of pressure head between two ends of a pipe 500 m apart is 4 m of water. Take the value

of coefficient of friction f = 0.009.

[3]

[7]

15. a) Define cavitation. What are the effects of cavitation? Give the necessary precautions against cavitation. [5] b) A single acting reciprocating pump has the plunger diameter 20 cm and stroke of 30 cm. The pump discharges 0.53 m³ of water per minute at 60 rpm. Find the theoretical discharge and power required to run the pump if the suction and delivery heads are 4 m and 12 m respectively. [5] 16. a) Exhaust gases flowing through a tubular heat exchanger are cooled from 400°C to 120°C. The cooling is affected by water that enters the system at 10°C and leaves the heat exchanger at 70°C. Calculate Log Mean Temperature Difference (LMTD) for i) parallel flow arrangement and ii) counter flow arrangement. [6] b) Compare single stage reciprocating air compressors with multi stage air compressors. [4] 17. Write short notes on any *two* of the following: a) Inverted gear trains [5] &b) Draft tubes used in reaction turbines [5] c) Working principle of centrifugal pump. [5]

ශශශනනන